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SUMMARY 
A technique combining the features of parameter differentiation and finite differences is presented to 
compute the flow of viscoelastic fluids. Twe flow problems are considered: (i) three-dimensional flow near 
a stagnation point and (ii) axisymmetric flow due to stretching of a sheet. Both flows are characterized by 
a boundary value problem in which the order of the differential equation exceeds the number of boundary 
conditions. The exact numerical solutions are obtained using the technique described in the paper. Also, the 
first-order perturbation solutions (in terms of the viscoelastic fluid parameter) are derived. A comparison of 
the results shows that the perturbation method is inadequate in predicting some of the vital characteristic 
features of the flows, which can possibly be revealed only by the exact numerical solution. 

KEY WORDS Viscoelastic fluids Parameter differentiation Stagnation point flow Stretching of sheet Finite-differ- 
ence method Generalized perturbation method 

1. INTRODUCTION 

Non-Newtonian fluids are increasingly being recognized as more appropriate in modern techno- 
logical applications in comparison with Newtonian fluids. Because of the non-linear nature of the 
dependence of stresses on the rate of strain for non-Newtonian fluids, the solutions of flow 
problems for these fluids are in general more difficult to obtain. This is not only true of exact 
analytical solutions but even of numerical solutions. 

Of particular interest is a class of fluids which have come to be known as viscoelastic fluids in 
the literature. The constitutive equation of this class of fluids is relatively simple, yet for such 
fluids considerable difficulties have been encountered in obtaining accurate numerical solutions 
of various flow problems. For over the last two decades, their solutions have been reported in the 
literature making simplifying assumptions which have been of late put under a cloud by recent 
researches. 

Consider, for example, the two-dimensional flow of a particular viscoelastic fluid, namely 
Walters B’ fluid, near a stagnation point. The boundary value problem (BVP) governing the 
motion is 

(1) f”’ +f f”  + 1 - f ’ 2  + k(fS” - 2f’f”’ +f”2)  = 0, 

with the boundary conditions 

f ( 0 )  = 0, f ’ (0)  = 0, lim f’(q) = 1, 
q-+ m 
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where f is a non-dimensional measure of the streamfunction, k is the non-Newtonian fluid 
parameter and a prime denotes the derivative with respect to v ,  the similarity variable. 

The difficulties in obtaining a numerical solution of the above BVP stem from the fact that the 
introduction of the non-Newtonian parameter increases the order of the differential equation 
from three to four, without any corresponding extra boundary condition. Beard and Walters' 
resolved these difficulties by assuming 

(3) f =fo + kfi  9 

wherefo is the solution for the Newtonian fluid andfi is the perturbation in the solution due to 
the non-Newtonian nature of the fluid. It turns out that the BVPs for bothf, andfl are of third 
order, with three boundary conditions, and their solutions can be obtained by any of the standard 
techniques such as the shooting method, finite differences, quasi-linearization or invariant 
imbedding. There is another attractive feature of this method: the solution curves for fo and 
fi being universal, the solution for an arbitrary value of k (small) can be obtained by simply 
superimposing the solutions of fo and fl . 

The literature abounds in the study of flow problems characterized by similar BVPs. Since the 
earlier effort of Beard and Walters,' numerous researchers (see e.g. References 2-5) have likewise 
tried to resolve the problems arising out of increased order of differential equations due to 
viscoelasticity of the fluid by seeking a perturbation solution of the type (3). They have sought 
refuge in the argument: 'Implicit in the derivation of equation (1) is the neglect of terms of order 
k2.  It is therefore reasonable to seek a solution of BVP (l), (2) of the form (3)'. That such an 
argument can lead to erroneous results was first shown by Frateq6 who, considering the problem 
of steady flow parallel to an infinite porous plate, demonstrated that the use of assumption (3) can 
lead to an overshoot of the velocity over its value in the mainstream. This example naturally shed 
doubts on the validity of the results obtained in Reference 1 and also implicitly on the results 
obtained in the vast body of literature on similar  problem^.^-^ 

Under the impression that numerical solutions of BVP (l), (2) could not possibly be obtained 
because of the lack of additional boundary condition, attempts were made to obtain its solution 
by other techniques, such as von Karman-Paulhausen integral methods 7 y  * and weighted residual 
m e t h o d ~ . ~ ~ l ~  None of these investigations shed any light on the question of the velocity 
overshooting its value in the mainstream. 

Recently two attempts were made independently by Teipel'l and the present author" to 
obtain the exact numerical solution of BVP (l), (2). Both these investigations have demonstrated 
that for a bounded solution no extra boundary condition is required. This is because f vanishes at 
q = 0. Teipel" used a Taylor series expansion for f near q = 0 to obtain a solution for f up to 
q=O-l and from that point on used the Runge-Kutta method to get the solution for the 
remaining range of v.  The present author," on the other hand, presented a method which is 
uniformly applicable for all values of k,  including k+O and k = 0. It combines the features of finite 
differences and the shooting method. Whereas Teipel's method is likely to be unstable for 
vanishingly small values of k, the method proposed in Reference 12 is free from this drawback. 
Both these investigations have reported the oscillatory nature of the boundary layer, resulting in 
the overshooting of the velocity in the boundary layer over its value in the mainstream, and the 
non-admissibility of the solutions for values of k exceeding some critical value. Teipel" erron- 
eously asssumed that the shear stress would become infinite for these values of k .  The present 
author,12 however, demonstrated that the solutions could not be obtained because there is 
a turning point in the solution. Both of these authors have, nevertheless, underscored an 
important principle, namely that for viscoelastic fluids the solutions obtained by seeking a per- 
turbation solution of the form (3) are not guaranteed to give acceptable results, qualitatively or 
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quantitatively, and that there is no alternative to seeking exact solutions (analytical or numerical) of 
the original set of equations characterizing the flow of viscoelastic fiuids. The present paper, 
emphasizing this principle, is one of several currently under preparation by the present author. 

In the present paper we consider two problems relating to three-dimensional axisymmetric 
flow of Walters B' fluid: (i) three-dimensional flow near a stagnation point and (ii) three- 
dimensional flow due to stretching of a sheet radially. The equations of motion for both problems 
are similar to equation (1). One could therefore apply the method enunciated in Reference 12. 
However, for a two-dimensional stagnation point flow a turning point was discovered in the 
solution. Anticipating a similar phenomenon for the three-dimensional flow, in the present paper 
we seek a family of solutions by steadily increasing the value of f " (0)  and determining the 
corresponding value of k. The solution proposed in Reference 12 is iterative. The iterations can be 
avoided by appealing to the idea of parameter differentiati~n.'~ This has been done in the present 
paper and the solutions of the resulting linear differential equation have been obtained by 
incorporating the ideas of Reference 12. 

For the second problem, even though one does not expect a turning point in the solution, 
a family of solutions is sought by varying the value of k and determiningf"(0). Once again the 
ideas of parameter differentiation and those in Reference 12 are combined to obtain the solution 
for a range of values of k for which the solution exists. 

2. EQUATIONS OF MOTION 

The equations of motion for Walters B' fluid are14 

= -Vp+qoV2v-ko  , (4) 

v . v = o ,  ( 5 )  
where p, p ,  v, vo and ko denote respectively the density, pressure, velocity, limiting viscosity at 
small rate of shear and the short-memory coefficient of the fluid at a point. 

In the present paper we are concerned with steady axisymmetric flow of the fluid; therefore 

alat = 0, alao = o (6) 
and the velocity field has the components (u, 0, w )  in the cylindrical co-ordinate system (r, 8, z). 

The equations of motion (4) and ( 5 )  thus become 

au aw -+ -+- = 0, 
ar r dz (9) 

where 

V ' 2 = V 2 - l / r 2 ,  (10) 
For the two problems under consideration, namely the three-dimensional flow near a stagna- 

tion point and the axisymmetric flow due to radial stretching of a sheet, we look for a similarity 
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solution in which the velocity components are given by 

u = rf’(z), w = - 2f(z), 

where a prime denotes the derivative with respect to z. 

substitute for u and w in equations (7) and (8), we obtain 
Note that the choice (1 1) of u and w automatically satisfies the continuity equation (9). If we 

(12) 

(13) 

1 aP 
r ar 

aP 

p (  f ’  ’ - 2ff”) = - - - + ~ o f ” ’  + 2ko (ff ” - 2f’f”’), 

4pff’ = - - - 24‘0 f ” + 4ko (3f’f” -ff”’). 
az 

Integration of equation (13) with respect to z yields 

p =g(r) - 2pf’ - 2qof’+ 4k0(2f’2 -ff”), 
where g(r) is an arbitrary function of r. 

Differentiating equation (14) partially with respect to r, we obtain 

1 aP 
r a r  r ‘ 

- 

Since in equation (12) (l/r) dppr is a function of r only by virtue of equation (15) and the 
remaining terms are functions of z only, it follows that (l/r) ap/ar must be a constant. Let 

Integration of equation (16) yields 

g(r) =+Ar’ + B, (17) 
A and B being constants. 

Hence the pressure p at any point is given by 

p = 3Ar’ + B - 2pfz - 2qof’+ 4ko(2f’’ -ff”). (18) 
The values of the constants A and B will be determined by matching the pressure in the 

Substituting for (l/r) ap/& from equation (16) in equation (12), we obtain 
mainstream flow. 

p ( f ”  - 2ff”) = - A  +vof”’  + 2ko(ffi’ - 2f’f”’). (19) 
Since the value of A depends on the mainstream flow, at this point we shall find it convenient to 

deal with the two problems at hand separately. 

3. THREE-DIMENSIONAL FLOW NEAR A STAGNATION POINT 

For the three-dimensional flow near a stagnation point the mainstream flow is the potential flow 
in which the velocity components are given by 

u, = Er, W, = -2Ez, (20) 
E being a constant. 
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Using Bernaulli’s equation, the pressure in the potential flow is given by 

where p o  is the pressure at the stagnation point. 
Substitution of u, and w, from equation (20) yields 

Matching of p in equations (18) and (22) gives 

Thus we have the following expression for pressure: 

(24) 
If we substitute for A from equation (23) into equation (19), we obtain the following differential 

equation for f :  

(25) 

Equation (25) can be non-dimensionalized by introducing the variables 

in which case equation (25) takes the form 

where 

is the dimensionless measure of the viscoelasticity of the fluid and a prime now denotes the 
derivative with respect to 

The boundary conditions on 4 correspond to the no-slip condition at the surface z = 0 and the 
asymptotic limit to the mainstream flow as z+co and are given by 

(28) 

rather than with respect to z. 

(29) 

3.1. Parameter diferentiation 

It has been shown by Teipel’’ and ArielI2 in an analogous situation that, notwithstanding the 
fact that the order of the differential equation governing 4 is four and there are only three 
boundary conditions on 4, if 4”(0) is known that satisfies the asymptotic boundary condition 
4’(co)= 1, then the solution for # can be obtained. Let us then assume that 

(30) 

When k =O, i.e., for a Newtonian fluid, the flow field is well known. It was given by Hornman,l5 
who found numerically 

We shall now increase the value of s gradually from its value 1.312 for k = 0 and determine the 
corresponding value of k. Differentiating equation (27) with respect to s, we obtain 
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where 

The boundary conditions on F are 

F(0)  = 0, F'(0) =0, F"(0)  = 1, F'( CO) = 0. (33) 
Note that equation (3 1) is a linear differential equation. Therefore its solution can be found 

non-iteratively. One can indeed use the principle of superimposition to obtain the value of B. We 
write 

F = G + P H ,  (34) 
where G and H satisfy 

G"' + 24G" - 24'G' + 24"G + 2k(4Gi' - 24"'" - 24"'G' + 4iv G) = 0, 

G(0) = 0, G' (0) = 0, G"(O)=l, (35) 

H"'+2~H"-2~'H'+2~"H+2k(~H"-2~'H~"-2~"'H'+~"H)+2(~~"-2~'~"')=0, 

H(O)=O, H ' (0 )  = 0, H"(O)=O. (36) 

j?= -G'(m)/H'(w). (37) 

The value of B can now be found by using the terminal condition F'(oo)=O. We have 

It may be noted that the sets of equations (35) and (36) are initial value problems (IVPs). Thus 
one marches forward with the given initial conditions and carries out integration until 8, given by 
equation (37), becomes stationary. This is the required value of B. When substituted in equation 
(34), it will give the value of F. 

Once the values of .F and p are known, which respectively denote the rate of increase of 4 and 
k with respect to s, the values of 4 and k can be obtained at the next step of s, in principle at any 
rate. Hence the solution can be developed up to any desired value of s by continuously increasing 
its value. 

The IVPs (35) and (36) can be solved by following either the technique of Teipel' ' or that given 
by Ariel." In the present paper we follow the latter technique since it allows the solution to be 
developed for all values of k,  including k=O and k+O. 

3.2. Discretization of IVPs 

Solution for G: We write 

4 = Y l ,  4 ' = Y z ,  4"=y3,  

3 .  G = z l ,  G ' = z ~ ,  G"=z 

The IVP (35) can be rewritten as 

z; = z z ,  z;=z3, 

z; + 2y, z3 -2y,z, + 2y3zl + 2k(y, ZI; - 2yzz; -2y;zz + yI;z,) = 0, 

Zl(0) = 0, ZZ (0) = 0, z3(0)= 1. 
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Introducing a mesh defined by 

(i=ih, i =O,  1,2, . . . , N ,  (40) 
where h is the mesh size and N is a sufficiently large number, one can discretize the above system 
to obtain 

zj+ 1 -z;- 1 + 2y iz j  - 2y:z; + 2yizi  
2h 

y:+ 1 - 2yj: +y:- 1 

h Z  j + ' - Y i - l  z: ' + zi+1 -z;- 1 
- 2 y3 

-2Y2 2h 2h 

Note that since we are using central finite differences for the derivatives and averages, the 

Equation (41) can be solved explicitly for z:+' to yield 
accuracy of the above system is O(h2). 

j +  1 
- 22: + z:- + y;z:-' -Zi(yi+' -yi-1) + z1 j y 3  -2yi+y4-' 

h (45) 

Equation (45) involves the values of z3 at three adjacent mesh points, namely j -  1, j and j +  1. 
Since only the value of z: is known, in order to use equation (45) iteratively, one needs to know 
the value of z: . This can be found by seeking a Taylor series expansion of z3 or GI' around = 0. 
We have 

z: = G"(h) = G"(O)+ kG'"'(0) +- hZ G iv  (O)+ O(h3) = 1 -2h2 k 
2! 

within an accuracy O(h2). 
The value of G"(0) can be obtained by differentiating the differential equation (35) and setting 

[=O. 
Now, since z: is known, making use of the initial conditions (44), z i  and z: can be found 

directly from equations (42) and (43) respectively. Next zz is determined from equation (45) and 
zz and z: from equations (42) and (43) respectively. The cycle is repeated until the values of the 
vector z=(zl,  z2, z3) are determined at all mesh points. It is worth noting that the values of the 
components of z must be calculated in a specific manner. First z3, then z2 and finally zl  are 
computed using equations (45), (42) and (43) respectively. 

Solution for H. We can similarly write 
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IVP (36) can be restated as 

It may be noted that the only differences between the above system of equations and system 
(39) are in the presence of the non-homogeneous term 2(y,yI; -2y ’y j )  in the differential equation 
for z 3  and the null initial value of z 3 .  Equation (45) is therefore replaced by 

- y ;  ( y :+ - y;- I)]. -2y ;  + y;- j +  1 

h 
-4h ( y ;  y 3  (49) 

Also, because of the different initial value of z 3 ,  equation (46) is replaced by 

Z: = - 2sh’. (50) 

The procedure for computing the values of z at various mesh points is identical to the one 
outlined above and will not be repeated here. The computations of G and H need to be carried out 
simultaneously until the value of f l  given by equation (37) becomes stationary. At this point F and 
its derivatives can be obtained from equation (34). 

3.3. Calculation of 4 at the next value of s 

Since the values of F and f l  have been found, it should be possible, in principle at any rate, to 
obtain the values of Cp and k at the next step of s by integrating equation (32). Na13 in his 
celebrated work and other published material (see e.g. Reference 16) recommends the use of the 
simple Euler method. Thus if A 4  and Ak represent the increments in 4 and k respectively, 
corresponding to an increment As in s, from equation (32) one can write 

ACp = F AS, Ak = BAS. (51) 
The accuracy of the Euler method is O(As) only. This can be improved substantially by using 

other integration algorithms (see e.g. Reference 17). However, in order to preserve the simplicity 
of the method of parameter differentiation, it is desirable to make use of the values of 4 and k at 
the integration steps only, and not at ‘half-steps’ as required in Runge-Kutta methods. 
Adam-Bashforth methods fit in nicely with the above requirements since they require the values 
only at the previous integration steps. In the present paper we have used the two-step 
Adam-Bashforth method, which yields an accuracy O(As)’ and is consistent with the discretiz- 
ation scheme used in the space domain. 

For a two-step Adam-Bashforth method one needs an additional set of values for 4 and k at 
the level so +As. Then at the subsequent levels so +jAs ( j >  1) the solution can be developed 
inductively. The values at the level so +As can be obtained within an accuracy O ( A S ) ~  by either 
differentiating equation (31) once again with respect to s to obtain the values of d’4/ds2 and 



FLOW OF VISCOELASTIC FLUIDS 1303 

a 2 k / d s 2  and using 

1324  SO +AS) =  S SO) +- AS + -7   AS)^, 
as 2 as 

ak l d 2 k  
k(so + ASj= k(so)+ - A s + - T ( A s ) * ,  

as 2 as 
or by solving BVP (27), (29) iteratively using a suitable iterative scheme such as the one detailed 
by the present author in Reference 12. Since the expensive iterations take place only at one level, it 
is a small premium to pay for the greatly improved accuracy of the solution. In the present paper 
we have used the iterative scheme12 to obtain the values of 4 and k at the first level (so + As). Note 
that the method proposed by Teipel” would not be a suitable choice, since the value of k sought 
at the first level is rather small. 

There was another consideration which warranted attention. The values of k (and 4) vary 
unevenly with s. An inspection of the k-s curve12 shows the direction of the tangent varying from 
nearly horizontal to vertical. In order to optimize the computing resources, it is desirable to cater 
for variable step sizes of s. For this reason the Adam-Bashforth method of second order, 
appropriate to variable step size, was used.” The value of As was varied from 0.001 to 0.5 
depending on the slope of the k-s curve. The value of ( where p became stationary also depended 
strongly on the value of k. Thus for k 4  1, i.e. for a slightly non-Newtonian fluid, practically 
became constant (five significant digits) at i = 4, but for k = 0.1 5 the same could be realized only at 
i = 20. Finally, the accuracy of the results was checked periodically by computing the values of 
4 and k iteratively at selected values of s. 

3.4. Results and discussion 

In Figure 1 the velocity profile 4‘([) is plotted against i for various values of k.  As reported by 
Teipel l1 and Ariel,” oscillations occur about the value of the mainstream velocity (4’ = 1) for all 
non-zero values of k,  the amplitude of the oscillations increasing with increasing value of k. This 
paper thus further confirms the original conclusion of Beard and Walters,’ namely that the 
viscoelasticity of the fluid causes the velocity in the boundary layer to exceed its value in the 
mainstream flow. Also, it furnishes evidence that the oscillatory behaviour of the boundary layer 
for viscoelastic fluids, first reported by Teipel” and Arie1,l2 is not due the numerical scheme 
chosen by those authors but is an inherent physical characteristic of the fluid. That this is indeed 
the case is further demonstrated in the Appendix, where the solution of BVP (27), (29) is derived 
using the generalized perturbation technique. 

In accordance with the standard practice of parameter differentiation, the value of s (= 4”(0)) 
was increased from its initial value so. The solutions could be obtained only for k l k , ,  where 

k,=0*185 909. 

No solutions could be obtained for k >  k,. 
However, just as in the case of the two-dimensional flow, another branch of the solution was 

discovered when s was further increased. For this branch the value of k monotonically decreases 
with an increase in the value of s. These findings are illustrated in Figure 2, in which 4”(0) is 
plotted against k. One can notice the turning point in the figure at k = k,. It is also clear that dual 
solutions exist for all values of k < k,. 

In Figure 3 the dual solutions for velocity profile are plotted for some selected values of k near 
k,. From the figure it can be seen that the amplitude of the oscillations increases sharply for the 
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b 
Figure 1. Three-dimensional flow near a stagnation point: variation in velocity distribution 4'([) with I, the similarity 
variable, for various values of k, the viscoelastic parameter. Curve a, k=0.00, curve b, k =0.05; curve c, k =0.10; curve d, 

k=0.15 

upper branch of the solution as k is decreased from its maximum value k , .  For this solution it was 
found that for values of k less than a certain value the amplitude of the osciallations exceeds unity, 
giving rise to backward flow (4'<0) for some values of [. A further decrease in the value of 
k increases the amplitude even more, which strongly suggests that the solutions corresponding to 
the upper branch in Figure 2 are unstable. 

3.5. Results using perturbation technique 

It may be of some interest to compare the results obtained by the technique used in the present 
paper with those obtained by using the perturbation technique characterized by equation (3), 
since the latter has been extensively used in the literature. 

Writing 
4 = 4 0  +&I (53) 

and expanding equation (27) to the first order of smallness in k,  one obtains the following pair of 
BVPs: 

(54) 

(55)  

4;' + 240 4; + 1 - &2 = 0, 

40(0)=0, 4 b ( O ) = O ,  4b(m)=1, 
4:' + 2404; - 24b4i + 24641 = -2(404i"-24b4;'), 

4 1 (0) = 0, 4; (0) = 0, 4; (a) = 0. 
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Figure 2. Three-dimensional flow near a stagnation point: variation in @‘(O) with k,  the viscoelastic parameter. There is 
a turning point at k = k ,  (=0.185909). Dual solutions exist for k i k , .  No solution exists for k >  k , .  

BVP (54) is well known as characterizing Homman’s flow. Its solution is reproduced in 
textbooks on fluid dynamics. The solution of BVP (55) can be obtained in a single iteration, since 
it is a linear BVP, by invoking any of the standard techniques, such as the shooting method. 
Using this technique, the missing initial condition was found as 

$;(O)= 1.481 487. 

In Table I the values of 4”(0) are listed using the technique of parameter differentiation 
suggested in the present paper and the perturbation technique described above. One can note the 
increasing discrepancy between the values as the value of k is increased. In particular, using the 
perturbation method, the results for 4”(0) have the maximum error near the turning point where 
there is a vertical tangent. Of course, beyond k = k, the perturbation method would still give 
results, whereas in theory no solution exists for these values! 
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c 
Figure 3. Three-dimensional flow near a stagnation point: dual solutions. The velocity distribution 4’([) is plotted 
against [,the similarity variable, for various values of k. The dotted curves indicate the solution on the upper branch of the 
curve in Figure 2. The solutions corresponding to these curves are likely to be unstable. Curve a, k=0.17; curve b, 

k=0.18; curve c, k = k , ;  curve d, k=0.18; curve e, k=0.17 

Table I. Variation in 4”(0) with k for three-dimensional 
flow near a stagnation point 

Exact Perturbation 

0.00 1.311938 1.311938 
0.05 1.397741 1.386012 
0.10 1.520806 1.460087 
0.15 1.739889 1.534161 

From the foregoing one can conclude that in order to obtain accurate information about the 
nature of the solution of flow problems of viscoelastic fluids, the full set of equations must be used 
rather than the perturbed ones. The present paper furnishes yet another algorithm which obviates 
the difficulty characterizing the BVP of type (1) and (2), in which the order of the differential 
equation exceeds the number of boundary conditions. Using this algorithm, it is possible to 
determine the enitre family of solutions which exist for various values of k and also the turning 
point which limits the values of k, thus giving the range of k for which solutions are feasible. 
Finally, using the present algorithm, another branch of solution could be found, even though it 
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appears highly likely that it is unstable. It may be remarked that these conclusions could not 
possibly be reached using the perturbation technique, even though the values of k under question 
were quite 'small' ( < 0 . 2 ,  a value used by Beard and Walters'). 

4. AXISYMMETRIC FLOW DUE TO RADIAL STRETCHING OF SHEET 

In this section we turn our attention to the flow ofviscoelastic fluid caused by the radial stretching 
of a sheet. The corresponding two-dimensional flow has been considered by Rajagopal et al.,4 
who obtained the perturbation solution for the flow. An exact solution of the same problem was 
spotted by Troy et a l l 8  Ariel," using an iterative technique, obtained the numerical solution of 
the full set of equations and demonstrated that the numerical value oft ,  the dimensionless stress 
on the sheet, was in complete agreement with the exact analytical value. This fact should also give 
confidence in the numerical results derived in the present paper, since they were checked using the 
iterative technique reported in Reference 12. 

Analogously to the two-dimensional case, we take the radial velocity of the sheet to be 
proportional to the distance from the stagnation point. The equation of motion, (25), is modified 
in view of the fact that now u, = w ,  = 0. Consequently, we have the following equation for (6: 

4"'+244ff-4f2 + 2 k ( 4 4 " - 2 4 ' 4 " ' ) = 0 .  (56) 

4(0)=0, @'(O)=l ,  f$'(Co)=O. (57) 

The boundary conditions on 4 become 

The BVP defined by equations (56) and (57)  is very similar to the one discussed in the previous 
section and one can use the parameter differentiation technique to solve it. However, for the 
present problem there is no particular reason to 'invert' the problem and obtain k for a range of 
values of 4"(0). One can proceed 'directly' and obtain 4"(0) for a range of values of k. 

4.1. Parameter differentiation 

Differentiating equation (52)  with respect to k, we obtain 

F"' + 24F1'-24'F'  + 2 4 " F + 2 k ( 4 F i ' -  24 'F"-24"'F'+ 4 i " ) + 2 ( 4 4 i v - 2 4 ' 4 ' ' ' )  =O, (58 )  

where now 
F = &$/ak. 

The boundary conditions on F become 
(59) 

F (O)=O, F'(0) = 0, F'(co)  = 0 .  (60) 
We write 

F =BG + H .  

It is easy to see that G and H satisfy exactly the same differential equations as in IVPs (35) and 
(36). It is also possible to impose the identical missing initial conditions on G"(0) and H"(O), 
namely that G"(0) = 1 and H"(0) = 0. Thus we solve the same set of equations for G and H as in the 
previous section (except of course that the 4s are now different). However, now j? is given by 

P= - H ' ( W ) / G ' ( W ) .  (62) 

The values of G, H and can be computed using the discretization scheme given in Section 3.1 
and F then can be obtained from equation (61). By integrating equation (59), 4 can be found at the 
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next level of k. Once again it was found convenient to use the second-order Adam-Bashforth 
method, but it was not necessary to change the step size of k. It was kept uniform at 0.001. 
Further, the value of p became stationary to within five significant digits at 5 = 5 for all values of k .  
This can possibly be attributed to the fact that the velocity profiles for the type of flow considered 
in this section do not have an oscillatory character, unlike the case of the previous problem of 
stagnation point flow. 

For the present problem it is possible to show analytically that the solution breaks down for 
k = f .  Setting [ = 0  in equation (56) and making use of the boundary conditions (57), we get 

1 
1 - 4 k ’  

O”’(0) = - 

Thus one should not expect the solutions to exist beyond k = a .  For the two-dimensional 
problem a similar restriction applies on k.  

4.2. Results and discussion 

In Figure 4 the velocity profiles are plotted against [ for various values of k. A perturbation 
solution was also developed as in Sectibn 3.5. In Table IT the values of #”(O) are presented using 
the technique of parameter differentiation and the perturbation method. It can be seen that as 
k approaches the limiting value a, the results obtained by the perturbation technique tend to be in 

Figure 4. Axisymmetric flow due to radial stretching of a sheet: variation in velocity distribution I$’([) with [, the 
similarity variable, for various values of k, the viscoelastic parameter. Curve a, k = 0.0; curve b, k=0.1; curve c, k=0.2. No 

solution exists for k20.25 
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Table 11. Variation in qY'(0) with k for axisymmetric flow 
due to radial stretching of sheet 

Exact Perturbation 

0.00 - 1.173988 - 1.173988 
0.05 - 1.272125 - 1.259434 
0.10 - 1'408094 - 1.344880 
0.15 - 1.623481 - 1.430325 
0.20 - 2.089282 - 1.515771 

gross error compared to the exact results. The perturbation method, as expected, does not 
anticipate the vertical tangent in the values of 4"(0) near k=i. Also, it fails to predict the 
non-existence of the solution for k 2 4. 

5. CONCLUSIONS 

In the present paper we have considered two problems concerning the axisymmetric flow of 
viscoelastic fluid: (i) flow near a stagnation point and (ii) flow due to radial stretching of a sheet. 
For both problems, solutions are obtained by the technique of parameter differentiation and the 
perturbation technique. The exact numerical solutions obtained by the former technique point to 
the conclusion that whenever possible, one should seek the solution of the full set of equations for 
viscoelastic fluids, since the solution obtained by the perturbation technique might fail to reveal 
the vital characteristics of the flow introduced by the viscoelasticity of the fluid. The present paper 
has added one more algorithm to obtain the desired exact numerical solution. The algorithm has 
an advantage over those reported earlier by Teipel l 1  and Ariel l 2  in that it obtains the solutions 
non-iteratively and is therefore computationally more efficient. It can be used equally effectively 
to solve flow problems of viscoelastic fluids through porous ducts, between disks, etc., especially 
when afurnily of solutions is sought for a range of values of the viscoelastic fluid parameter. 
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APPENDIX 

This appendix is intended to substantiate the numerical results reported in the paper using the 
parameter differentiation technique. We present one more algorithm which is based on the 
plausible assumption that 4 defined by equation (26) and given by BVP (27), (29) is an analytical 
function of k ,  the non-Newtonian fluid parameter, at least in the neighbourhood of k=O. This 
implies that 4 admits a power series expansion in k,  which converges within a suitable radius of 
convergence. We can therefore write 

i = O  

where bi are functions of i. 
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Note that (64) is a straightforward generalization of the perturbation technique presented in 
Section 3.5. One of the aims of solving BVP (27), (29) in its entire generality is to obtain its 
accurate solution. By retaining higher-order terms of k,  it is hoped to achieve this aim at least to 
a certain extent. 

For the corresponding problem of two-dimensional stagnation point flow, Beard and Walters,’ 
by retaining the first-order terms of k, were able to demonstrate that the velocity in the boundary 
layer exceeded its value in the mainstream flow. However, they were not able to establish the 
oscillatory nature of the boundary layer. By taking higher-order terms of k in (M), it may be 
possible not only to get quantitatively more accurate results but also to obtain qualitatively 
a more complete picture of the flow characteristics. 

Substituting 4 from (64) into BVP (27), (29) and equating like powers of k, we obtain BVP (54) 
for do for the Newtonian fluid and the following BVP for r$i (i2 1): 

i -  1 i -  1 

4i”+24,4; - 24b4i + 24:4i= - 1 (24i- j4; - 4;- j4;)-2 1 (4i- 1 - j $ y -  24;- 1 - j $ y ’ ) ,  (65) 
j =  1 j = O  

4i (O)  = 0, 4; (0) = 0, &;(a) = 0.  

Let ON denote the partial sum of the series in (64) up to the Nth power of k,  i.e. 
N 

4 i k i .  
i = O  

For sufficiently small values of k one can expect the sequence {Qo, Ql, Q2, . . . } to converge to 
the exact solution 4. As remarked earlier, the BVPs for r$i are of standard type in which the order 
of the differential equation is the same as the number of boundary conditions. Moreover, they are 
linear; therefore their solutions can be obtained non-iteratively by any of the standard techniques. 
In view of the increasing complexity of BVPs (65), a practical limit must be imposed on i. We 
chose to limit the solutions for 4i up to i =3 .  The solutions for r$o and $1 have already been 
obtained in Section 3.5. The solutions for 42 and r$3 were obtained using the shooting method. As 
we shall see, they have enough information to arrive at some meaningful conclusions. 

In Table I11 the values of Qi ( i  = 0-3) are presented for k = 0.1 5. Also given in the table is the exact 
numerical solution using the parameter differentiation technique. The most interesting aspect of 
the results is the development of the oscillatory nature of the boundary layer. When only the 
first-order term of k is taken into consideration, the velocity crosses the mainstream value and 
approaches it from the top. However, when the second-order term is also included, the velocity 
crosses back over the mainstream value, giving rise to a wave-like phenomenon. This is further 
affirmed when the third-order term is included next. The velocity which had become less than the 
mainstream value for large values of [ for the second-order solution now again exceeds this value 
for the third-order solution. The pattern thus seems to be established-addition of each term in 
equation (64) leads to the crossing by the velocity of its mainstream value and formation or 
completion of the half-wave front, resulting in oscillations of the boundary layer. This therefore 
lends weight to the validity of the numerical results obtained in this paper using parameter 
differentiation. 

Another aspect of the generalized perturbation method deserves a mention. Note that as the 
value of i is increased, Qi takes longer distances to approach its asymptotic value of unity. This 
means that the oscillatory behaviour becomes more pronounced and lasting because of the 
higher-order terms in (64). However, these terms essentially contribute for larger values of k. 
Hence as k increases, one can expect oscillations to take place more violently and to extend to 
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Table 111. Variation in 4' with [ for k=0.15. ai denotes the partial sum of series (64) up to 
the term k' 

i 9' @b @; % 

0.0 
0 1  
0 2  
0.3 
0.4 
0 5  
0.6 
0.7 
0.8 
0.9 
1 -0 
1.1 
1.2 
1-3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3-8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 

O.oooO00 
0.1688 12 
0.326532 
0.472025 
0.60417 1 
0721945 
0824504 
091 1269 
0982001 
1.036858 
1.076421 
1.101698 
1.1 14090 
1.115332 
1.10741 1 
1.092462 
1.072665 
1.0501 36 
1.02683 1 
1.004466 
0984457 
0.955447 
0.944166 
0949833 
0.967832 
0.991512 
1.0 14034 
1.029933 
1.036 146 
1.032378 
1.020808 
1.005263 
0990103 
0979103 
0974600 
0977076 

O~OOoooO 
0 126 194 
0.242394 
0.348632 
0444987 
0.53 1603 
0608710 
0.676628 
0.735773 
0.786655 
0429868 
0.866072 
0.895977 
0-9203 17 
0.939827 
0.95522 1 
0967174 
0.976302 
0.983158 
0.988220 
0991892 
0.996345 
0.998459 
0.999394 
0.999778 
0.999924 
0.999976 
0.999993 
0.999998 
1 oooooo 
1.000000 
1 aooo00 
1.000000 
1.000000 
1.000000 
1.000000 

0~000oO0 
0.148288 
0.285831 
0.411976 
0-526196 
0.628 13 1 
0-717619 
0.7947 17 
0.859717 
0-913144 
0.955744 
0988457 
1.012378 
1.028705 
1.038689 
1@l3580 
1.044566 
1.042740 
1.039056 
1.03431 1 
1.029 136 
1.019223 
1.011407 
1,006141 
14lo30 13 
1.001 3 5 1 
1.000555 
1~000209 
1000072 
1~oooO23 
1.000007 
14loooO2 
1~000000 
1~000000 
1WO000 
l.oOO000 

0000000 
0156982 
0.303039 
0437275 
0558886 
0.667220 
0761841 
0842571 
0909532 
0963159 
1~004200 
1.033687 
1.052899 
1.063 302 
1.066479 
1.064058 
1,057627 
1.048668 
1.03849 1 
1.028 182 
1.018577 
1.003514 
0.995072 
0992259 
0992888 
0994872 
0996874 
0998339 
0.999219 
0.999672 
0.999876 
0999958 
0,999987 
0999996 
0999999 
1 4looooO 

O W 0 0 0 0  
0.16 123 1 
0.3 11464 
0.449704 
0.575021 
0.686625 
0783935 
0866632 
0.934708 
0.988491 
1.028657 
1.0562 18 
1.072494 
1.079062 
1.077684 
1.070229 
1-058580 
1.044536 
1.029731 
1.015554 
1.003085 
0985882 
0.97993 1 
0982617 
0989285 
0995802 
1~000023 
1.001767 
1.001893 
1.001363 
1.000783 
1*000380 
1WO160 
1~oooO59 
1.000019 
1900006 

larger values of c. This is again in line with the results reported in this paper and the earlier 
works.", 

Useful though the generalized perturbation technique is in the study of the development of the 
solution, it has got certain limitations. The most serious drawback is of course that no matter how 
many terms one may take in the expansion (64), the perturbation technique cannot account for 
a turning point in the solution. This is simply because a polynomial expansion cannot cater for 
a vertical tangent. Next, even though it is true that, since q5i are universal functions, by 
a superimposition of their solutions q5 can be obtained for any 'small' k, the trouble arises when 
one tries to quantify the smallness of the admissible values of k. A value of 0.2 may be considered 
small compared to unity, but as the present study shows, this may be too large a value, in fact 
greater than the critical value of k beyond which no solution exists. Finally, from a practical point 
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of view the computation of @ i  beyond a certain value of i requires considerable effort. The series in 
(64) must therefore be truncated after a few terms. This naturally puts a limit on the value ofk if an 
accurate solution is required. As an example, for the third-order expansion @”(O)  is given by 

4”(0)=1*311938+ 1.481 487 k+3$75556k2+12620725k3+O(k4).  

If an accuracy of nearly 0.5% is required, one can go only as far as k=0.1. For still higher 
values of k the above formula gives much worse results, and recourse must be taken to a technique 
such as parameter differentiation or the iterative algorithms given by Teipel” and the present 
author.” For values of k of this size, Teipel’s method should not present any difficulties. 
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